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WELCOME

The course will follow the book of Norris closely, though some proofs will
be different.
If time permits, we will do some renewal theory at the end.

I will use the Moodle page for discussions, answering questions.
I will have an office hours Friday 14:15-15:00



Probability Theory: A review

A Probability Space is a triple (Ω,F ,P) where

• Ω is a nonempty set.

• F is a sigma algebra of subsets of Ω. An element of F Is called an
event

• P is a probability measure on F . (NOT on Ω!)



Probability Theory:continued

A sigma algebra of subsets of Ω,F Is a collection of subsets of Ω such that

• Ω ∈ F .

• A ∈ F =⇒ Ac ∈ F

• A1,A2, · · ·Ak , · · · ∈ F =⇒ ∪kAk ∈ F

Think of events in F as things we can ask whether they occur (or not).
I.e. whether ω ∈ A (or not) If we can ask whether A occurs or not, then
we can ask whether Ac occurs or not. If we can ask whether each of the
Ak occurs or not then we can ask whether at least one of them occurred.



Probability Theory:continued

A probability measure P on F is a function P : F → [0, 1] such that

• P(Ω) = 1.

• If A1,A2, · · ·Ak , · · · ∈ F are disjoint (i.e. i 6= j =⇒ Ai ∩ Aj = ∅),
then P(∪kAk) =

∑
k P(Ak)

We can think of P as a kind of proportion. If we think of (Ω,F ,P) s a
model of an experiment in which an outcome ω is “picked”, then if the
experiment is repeated independently endlessly P(A) is the proportion of
times A occurs.



Examples

(1) Consider Ω = {a, b, c}, F = 2Ω (i.e. all subsets of Ω) and

P(A) =
1

2
1a∈A +

1

3
1b∈A +

1

6
1c∈A

(2) Ω = [0, 1], F = B, the Borellian subsets of Ω and

P(A) = λ(A)

where λ is Lebesgue measure on Ω



Random Variables
Given a probability space (Ω,F ,P), a random variable

X : Ω → R

so that
∀B ⊂ R, Borellian, X−1(B) ∈ F .

(Recall X−1(B) = {ω : X (ω) ∈ B}). Or for every Borellian subset B of
R, the subset {ω : X (ω) ∈ B} is an event.
Note: P plays no role in decding whether X is a random variable. If X is a
function to a different space (say Rn), then whave the same definition and
use the phrase random element.

Given (Ω,F ,P) and X a random variable on this space, we can create the
probability space (R,B,PX ) where (CHECK it is a probability)

PX (B) = P(X−1(B))

PX is the law of X .



Random Variables contd

Given a random variable X , its distribution function, FX (t) is the function
on R

FX (t) = PX ((−∞, t])

Note FX has the properties

a FX is increasing

b FX is right continuous (with left limits)

c limt→∞ FX (t) = 1, limt→−∞ FX (t) = 0

In fact if two variables X and Y (not necessarily defined on the same
probabiliy space) have the same distribution function, then they have the
same distribution.
If a function on R has the properties a)-c) above, then it is the
distribution function of some random variable.



Sub sigma algebras

Given a collection of events {Ai}i∈I , the sigma field generated by {Ai}i∈I is
the smallest sigma field containing Ai∀i . It is written σ{Ai i ∈ I}. Given
random variables X1,X2, · · ·XN the sigma field generated by the
Xi , i ≤ N , σ(X1,X2, · · ·XN) is the smallest sigma field with respect to
which Xi are measurable. I.e it contains

{Xi ∈ B} ∀ i ,∀B ∈ B

In fact σ(X1,X2, · · ·XN) = {(X1,X2,XN) ∈ A)}A∈BN



Conditional probability

Given an event B of nonzero probability in a probability space(Ω,F ,P),
the conditional probability of event A ∈ F given B , P(A | B) is defined to
be

P(A | B) =
P(A ∩ B)

P(B)

You can think of the information that B occured effectively

• replaces Ω by B

• (more generally) replaces events A by A ∩ B

• replaces P by P(. | B)



Conditional probability continued
We will use the following repeatedly

Lemma
Law of Total Probability.: Given a partition of Ω into events
B1,B2, · · ·BM and any event A

P(A) =
M∑
i=1

P(Bi)P(A | Bi)

(if P(Bi) = 0, we can give P(A | Bi) any value in [0, 1] and the formula
will still be true.) It is also true for countable partitions.
By induction we obtain

Lemma
Given events A1,A2, · · ·AN

P(∩iAi) = P(A1)P(A2 | A1)P(A3 | A1∩A2) · · ·P(AN | A1∩A1∩· · ·∩AN−1)



For a random variable X (or a random element) taking countably many
values {i1, i2, · · · }, P(A | X ) is the random variable that is equal to

P(A | {X = ij}) on event {X = ij}



Independence

Definition: Two events A and B are said to be independent if

P(A ∩ B) = P(A)P(B)

(So if P(B) > 0,A and B are independent if and only if
P(A) = P(A | B).) If P(B) = 0 , then B is independent of every other
event A



Independence continued

The definition of independence for more than 2 events is a little less
straightforward:
Events A1,A2, · · ·AN are independent if for every choice of D1,D2, · · ·DN

where Di = Ai or Ω, we have

P(∩iDi) =
∏
i

P(Di)

(So A1,A2 and A3 are independent if and only if

P(A1∩A2) = P(A1)P(A2), P(A1∩A3) = P(A1)P(A3), P(A2∩A3) = P(A2)P(A3)

and P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3) )



Independence of R.V.s

Random variables X1,X2, · · ·XN are said to be independent if

∀Bi ∈ B P (X1 ∈ B1, · · ·XN ∈ BN) =
∏
i

P(Xi ∈ Bi)

This generalizes. Sub sigma fields GI , i = 1, 2 · · ·N are independent if for
every choice of Ai ∈ GI ,

P (∩iAi) =
∏
i

P(Ai).

(So random variables Xi are independent if and only if the sigma fields
σ(Xi) are independent.)



Conditional Independence

Definition: Two events A and B are said to be conditionally independent
given a third event C if

P(A ∩ B | C ) = P(A | C )P(B | C ).

Two random variables X ,Y are said to be conditionally independent given
random variable Z is for each Borels B1 and B2

P(X ∈ B1,Y ∈ B2 | Z ) = P(X ∈ B1 | Z )P(Y ∈ B2 | Z )


